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Abstract

A summary is presented of several results obtained recently copcerning the time
evolution of a soliton on a lattice. They include the derivation of a Liouville-Vor.
Neumann equation for the density matrix from the discrete nonlinear Schrodinger
equation and, for the two-site system, e.g. a molecular dimer, the derivation and
explicit solution of a closed nonlinear evolution equation obeyed by the difference
of the probabilities of occupation of the two sites. The progabilities are seen to
evolve in the form of Jacobian elliptic functions, and a transition from free to seif-
trapped behavior is seen at appropriate relative values of the intersite interaction
and the nonlinearity parameter. Features such as the polaron (or soliton) bandwidth
reduction conjectured for the general polaron transport problem are seen to emerge
as a consequence. Exact expressions for observables sucg as the scattering function
of relevance to quasi-elastic neutron diffraction experiments are displayed and shown
to contain explicit nonlinear characteristics.

The discrete nonlinear Schrodinger equation, which describes a number of phe-
nomena in various fields of physics, may be written as

N dem(t)/dt = =5V (cmt1 + €m=1) + $X|cm|?cm (1)

where ¢,, is the amplitude for the system to be in state |m >, V is the interstate
matrix element (assumed “nearest-neighbor” in (1)) describing the linear evolution
among the states |m >, and x is the nonlinearity parameter. In the specific system of
an electron or exciton in a crystal interacting strongly with phonons or vibrations,
|m > denotes the (localized) Wannier state centered on site m, V is proportional to
the bandwidth of the bare electron or exciton, and x is the energy lowering due to
polaronic effects, often written as a sum of the products of the vibrational energies of
the participating modes and the square of their coupling constants with the electron
or exciton. In (1), we have set A =1.

Equation (1) or similar equations have been written down or derived by a variety
of people in many different contextslll-7 . While solutions for its continuum limit are
well known [7(1, analytical solutions for the discrete chain are not available. We have
recently found (8] exact time-dependent solutions for il) for the case of a dimer, i.e.
when m can take on values 1 and 2 only, ard have applied them [9] to the calculation
of experimental observabies such as the quasi-elastic neutron scattering function and
fluorescence depolarization. A briefl description of those solutions and applications
follows, our reasons for displaying these results being two. First, they show, in a
completely explicit

*Work supported in part by the National Science Foundation under grant no. DMR-
850638 nnJ)by the Department of Energy under grant nos. 7405/ENG-36 and BES/
DMS-86-03-02.



manner, the phenomenon of self-trapping, energy mismatch behavior, polaron /solitan
bandwidth reduction and other expected and conjectured features of the evolution
described by the equation for the chain of arbitrary length, or generally for a crystal.
And second, far from being &.n overidealized system, the dimer is interesting in its own
right and aitainable experimentally [10-12]. Calculations for dimer observables are
therefore not merely pedagogical in nature but have direct significance in experiments.

Before proceeding further, a comment concerning terminology might prove help-
ful. Some current usage [2,13] refers to a “soliton” as simply a quasiparticle whose
time evolution and motion are described by a nonlinear equation such as (1), inde-
pendent of the total size of the system. In this usage, phrases like a “soliton in a
Wannier or Bloch state” and the idea of a soliton on a dimer are clearly acceptable. In
contrast, another usage reserves the term “soliton” for localized, nonlinear solutions
only in spatially extended systems (i.e., much larger than a dimer). Those readers
who nrefer the former usage should look upon the present analysis as that of soliton
motion in a dimer. Those who favor the latter terminology shou!d interpret it simply
as an investigation of energy transfer in a nonlinear dimer.

The derivation of the Liouville-Von Neumann equation obeyed by the density

matrix pm, from (1) is straightforward. Equation (1) and its complex conjugate can
be combined to give

dpmn/dt = "V(Pm'Hn + Pm-1n = Pmn+1 — Pmn-l) + “X(Pmm - Pnn)Pmn (2)

provided x is assumed real. We point out that a iinear chain with varying site energies
would obey (2) with the replacement of the second term sx{smm —#nn)smn by the energy
mismatch term —i(En, — E,)pmn, Where E,, is the site energy at m. The energy lowering
-x¢mm Which equals the product of x and the probability of occupation of site m is
thus completely evident in (2). For the dimer, (2) yields

dpiy/dt = =V (p3; = py3) (3)

\ dp1a/dt = =5V (paz — p11) +sx(p11 — p23)P12 (4)

with corresponding equations for p3; and p;;. The combination of (3) and (4) and a
straightforward calculation involving the elimination of the off-diagonal elements of
the denstiy matrix leads to the following closed nonlinear equation for the probability
difference p(t) = p11 — p23:

d’p/dt? = Ap - Bp® . (5)

In the absence of the nonlinearity, i.e. for x = 0, the coefficient A equals -4vV2? B
vanishes, and the probability difference p oscillates sinusoidally. In the presence of
the nonlinearity, for arbitrary initial conditions, A and B are given by

A= (x*/2)p] — 4V? = 2V x(pa1 + p1a)o i B = (x*/2) (6)
where the subscript 0 denotes the initial (i.e., t = 0) value.

The general solution of (5) and (6) may be written as
p(t) = Cen|(Cx/2k)(t - to) | k] = Cdn|(Cx/2)(t ~ to) | 1/k] (7)

1/k7 = 24+ (1/C?)|(4V/x)? + (8V/x)(pa1 + p12)o — 2p]) (8)

where C and t, are arbitrary constants to be determined from the initial conditio_ns.
e.g. the values of p and dp/dt at t = 0. One can verify directly the general solution
(7% by substituting it in (5).

Three consequences of (7) are interesting to explore. The first involves the ex-
traction of the specific form of the stationary states of the system by considering
the situation in which all the elements of p, and therefore also p, are indeperndent



of t. The second is relevant to the initial condition that only one of the two sites is
occupied, and shows a transition from free to self-trapped behavior. And the third

is an application of (7) to the calculation of an explicit observable, the scattering
function.

To extract the stationary states from (7), we differentiate it twice and equate both
dp/dt and 4%p/dt?® to O for all t. This leads to the results that C = po and ¢, =0 and to
the condition 1/k = 0. When substituted in (8), this results in

(4V/x)? + (8V/x)(pa1 + p13)o = O, ()

and thence to explicit expressions for the initial values of the density matrix elements.
These 1nitial values are, however, the values for all times, since the state under
consideration is stationary. Rewriting the elements of o in terms of the coefficients
of the eigenstates in the site representation, i.e., ¢; and ¢;, we arrive at

lesl = (1/2)*/2(1 + [1 - (2V/x)*)*/?)*/2 (10)

leal = (1/2)*/3{1 - [1 = (2V/x)?]}/3)1/3 (11)

which specifies the stationary states precisely from the general time dependent so-
lution (7). This exercise demonstrates that from our general solution for all times
one may recover the stationary dimer results given earlier by Eilbeck et al. [6]. One
can obtain (10) and (112 directly, and immediately, from our Eq. (5) by equating its
right hand side to zero for py # 0.

As the second consequence of (17'}1’ consider the initial condition that only one of
the two sites is occupied initially. The initial probability difference is then p, =1 (or
~1), and the off-diagonal elements of the density matrix are zero initially. Then,

A=(x*/2)-4v?; B=(x"/2) (12)

The probability difference is given by
N op(t)=cen(2Ve | k= x/4V) for x/4V < 1 (18)

if the nonlinear parameter is small enough, but by

plt) = dn(%xt | k=4V/x) for x/4V > 1 (14)

if it is large enough. In the former case the oscillations of the particle are such that
it resides equally on both sites but in the latter case it resides more on the initially
occupied site. The former case describes free behavior while the latter represents
incomplete intersite transfer, i.e. relative trapping as would be characteristic of an
energy mismatch. There is thus a transition at x = 4V. As a function of x, the
detailed behavior is as follows.

For x = 0, we see that the particle oscillates Letween the two sites with period
x/V. As x increases, the oscillations of the particle begin to depart from trigono-
metric behavior. The period of the oscillations of the particle is T = 2K (k)/V. It
increases as x/4V increases. As x approaches very close to 4V, the oscillations of the
particle show a marked departure gom trigonometric behavior: The period becomes
enormous as the particle oscillates sluggishly between the two sites. The logarithmic
approximation to K(k) is appropriate here and the period of the oscillations of the
particle is given by

T = (1/V)in{16/[3 - (x*/16V?)]) (15)

The free particle motion of the particle between the two sites for x < 4V deacribed
above is depicted in curves (a) and (b) of Fig. 1. When x equals 4V, a transition



occurs between this free motion and self-trapped behavior. At the transition, the
equalization of the probabilities of the two sites follows exactly a “sech™ evolution:

p(t) = sech(2Vt) = sech(xt/2) (18)

and the period of the oscillation is infinite. This is shown in curve (c) of Fig. 1.
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Figure 1. The difference in the probabilities of occupation of the two sites in a dimer
lotted as a function of time t (in units of 2V) for various values of (x/4V): (a) 0.95,

{)b) 0.9995, (c) 1, (d) 1.0001, (e) 1.75. Curves a and b are indicative of free-particle

motion, c describes the transition, and d and e represent self-trapping behavior.

As y increases beyond the transition, the oscillations no longer follow the cn
function but are described by the dn function (see (14)). In this region the probability
difference never crosses 0. Increasing x has now two effects: the amplitude of the
oscillations decreases and the period also decreases. Far away from the transition,
as x/4V approaches infinity, the oscillations follow a trigonometric evolution, i.e., can

be approximated by
plt) = 1 - (8V?/x?)sin? (xt/2) (17)

This is precisely the evolution of the probability difference in a linear dimer with a
true energy mismatch: the amplitude decreases with an increase in the amount of
the energy mismatch. The period of the oscillations is simply 2x/x.

This self-trapped particle behavior is depicted in curves (d) and (e) of Fig. 1. In
the limit as x/4V tends to infinily, the particle is entirely self-irapped as the amplitude
(and also the period) of the oscillations becomes zero.

A consequence of our analysis is the clear demonstration that a polaronic/
solitonic bandwidth reduction, which represents a lowering of the velocity of the car-
rier, is & natural outcome of the discrete nonlinear Schrédinger equation in the context
of the dimer. Being inversely proportional to the period of oscillation, the reduced



(or effective) bandwidth V,,, drops off sharply at the transition as the reciprocal of
a logarithm:

Vers = V{(2/0)K(x/4V)]™* w V[x/In{16/1- (x*/16V?)}] . (18)

the second equality in (18) being valid close to the transition. Equation (18) es-

tablishes unambiguously that a polaronic/solitonic bandwidth reduction does indeed
occur.

Finally, as the third consequence of (7), we display the scattering function §(w)
which descrites the intensity of probe particles such as neutrons which would lose or
gain energy Aw when scattered off the quasiparticle (the “moving soliton”) as it moves
between the dimer sites [9]. The general scattering function S(g,w), which involves
the (dimensionless) wavevector difference q as well as the frequency difference v, is,
in the case of a dimer, a weighted sum of an elastic contribution and the contribution
S(w), the weights being determined by the angle of the scattered beam to the line
joining the two sites of the dimer [9,14}. The contribution S(w) is identical to the
Fourier transform of the Van Hove correlation function, which, at high temperatures,
becomes identical to p(t), the difference in the probabilities of the two sites for init;al
single site occupation 115,16]. The Fourier transform of (7) for the initial single site

occupation thus gives |9]
S(w) = w|2kK (k))7? f:(aechwlk)[&(w —wn) + 8(w + w.)] (19)
S(w) = (1/4V)sech(wx/4V) = (1/x)sech(wx/x) (20)
S(w) = x[2K(1/k))" {§(w) + Z(uch wRy)6(w — Tp) + 8(w + Tn)])} (21)

for, respectively, the three cases x < 4V,x = 4V, and x > ¢V. In (19)-(21), R, is given
by Rc(k) = K[(1 - k%)/3)/2v, and R, (k) = (1/k)R<(1/k). In (19) the summation runs
from n =0 to oo and w, = 2V,y(2n +1). In (21), the summation is from n =1 to oc and
& = (nxx)/2K }). While further discussicn of these scattering results and an extension
for arbitrary temperatures may be found elsewhere LQ]. we point out here that, as
the nonlinearity is increased, {19) exhibits a “march” of the spectral lines towards
the origin, (20) represents a collapse of the é-function lines onto a finite spectrum at
the transition, and (21) shows an interesting reemergence of the é-functions followed
by a strengthening of the line at the origin and » weakening, and outward “march”,
of the other lines. This behavior of the spectrum of the nonlinear undamped dimer
as the nonlinearity is changed, resembles very closely, but is not identical to, the
phenomenon of motional narrowing exhibited by the spectrum of the linear damped
dimer as the damping is changed.
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